

BIOSWALES

Also known as infiltration swales, Bioswales are a form of bioretention designed to slow surface water runoff and help remove stormwater pollutants. These low-maintenance systems transport large volumes of stormwater to a discharge point, slowing the velocity and filtering the water.

As an added benefit, bioswales help recharge groundwater. Bioswales can be used in many applications, including pollutant removal, drainage retrofitting, and runoff management.

April 2023		Bioswales – Enviro Liner [®] 1000				
	Rev	ASTM	EL 1020	EL 1030	EL 1040N	EL 1040
Thickness Density (1 Tensile St	S	D5199	20 mil 0.5 mm	30 mil 0.75 mm	36 mil 0.91 mm	40 mil 1.0 mm
B Density (1	Гуріcal)	D792	0.93	0.93	0.93	0.93
	trength at Break	D6693	76 ppi 13 N/mm	114 ppi 20 N/mm	136 ppi 24 N/mm	152 ppi 27 N/mm
Elongatio	n	D6693	800%	800%	700%	800%
Elongatio Tear Resi	stance	D1004	11 lbs 49 N	16 lbs 70 N	19 lbs 84 N	22 lbs 100 N
Puncture	Resistance	D4833	28 lbs 120 N	42 lbs 190 N	54 lbs 240 N	56 lbs 250 N
Carbon Bl	lack Content	D6370	> 2.0%	> 2.0%	2.0%	> 2.0%
High Pres	sure OIT	D5885	400 min	400 min	N/A	400 min
Low Tem	perature Impact Resistance	D746	-69°F -56°C	-69°F -56°C	-40°F -40°C	-69°F -56°C
Service Te	emperatures	Max Continuous Use	140°F 60°C	140°F 60°C	140°F 60°C	140°F 60°C

Disclaimer: Layfield disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

For up-to-date technical information, be sure to visit us online at www.LayfieldGroup.com

Millio-

INSTALLATION

When building a Bioswale the soils must be non-compacted to promote vegetation and to provide filtering and infiltration to treat stormwater runoff. The soils must be engineered with carbon and nutrients to filter out any toxins from the stormwater while also promoting plant growth. Under some conditions, infiltration is undesirable due to either the pollutants being removed or to the need to retain water for droughts, irrigation, or other applications. In this case, we recommend the use of a liner below the depth of the active growth media of soil. When choosing a filtering media, the following soil properties should be considered:

- · Anion exchange capacity (AEC) or catlon exchange capacity (CEC), depending on pollutants of concerns
- · Anion Exchange Capacity (depending on the pollutants of concern),

NEED.

- pH
- Electrical Conductivity
- Air entrainment or soil compaction.

If the pollutants to be removed from the stormwater are positively charged (ions) metals such as Copper, Cadmium, Iron, Manganese, Aluminum, Mercury, etc., then an anionic (negatively charged) soil should be present. Most soils are negatively charged. The recommended CEC is at least 15 milliequivalent/100 grams of soil.

Bioswales are normally built with three basic vegetation types: high, middle, and low. It is highly recommended to use native plants to vegetate the bioswale so that they are more accustomed to the climate.

Disclaimer: Layfield disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

For up-to-date technical information, be sure to visit us online at www.LayfieldGroup.com

